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Abstract
In many social, economical and biological systems, the evolution of the states
of interacting units cannot be simply treated with a physical law in the realm
of traditional statistical mechanics. We propose a simple binary-state model
to discuss the effect of the inflexible units on the dynamical behavior of a
social system, in which a unit may have a chance to keep its state with a
probability 1 − q even though its state is different from those of the majority
of its interacting neighbors. It is found that the effect of these inflexible units
can lead to a nontrivial phase diagram.

PACS numbers: 89.75.Hc, 05.70.Fh, 05.50.+q

1. Introduction

Recently, the dynamical behavior of social systems has attracted much attention in complex
science. The Axelrod’s model of social interaction is proposed to understand the formation of
cultural domains [1–4] and a voter model is employed to study the formation of public opinion
[5–7]. In these models, the state of an individual is determined by one of the neighbors
randomly. Moreover, several models are defined on so-called simple majority rule [8–10],
which roots in the physics law in the field of classical statistical mechanics. In fact, the
minority sometimes takes an important role in the evolutions of many real social systems,
such as the transmission of cultural traits, the formation of public opinion and the choice of an
agent’s policy. In order to investigate the effect of the minority, a majority–minority model is
proposed where the states of all of sites of a group are determined by the local majority with a
probability k or by the local minority with a probability 1 − k and a phase transition appears
when k changes [11, 12].

In a real social life, the interactions between neighbors will not follow the traditionally
physical laws simply. The existence of a stubborn unit is a kind of special social phenomena,
such as not every kind of culture can change its features undoubtedly when it is surrounded
by other cultures. Such a refusal dynamics effect arising from local interactions is also found
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in public opinion formation [13]. It is very interesting to explore the effect of the stubborn
units on the evolutionary behavior in a social system.

In order to understand such kind of social phenomena, we introduce an inflexible
psychology of an individual in a social system. In our dynamical rule, when the state of
a site is the same as most of its mates, a change of its state will satisfy a majority rule [8].
When the state of a unit is different from the most of its mates, its state may change to follow
the surrounding effect with a probability q (0 < q � 1) or can have a tendency to keep its
state with a probability 1 −q. This inflexible mechanism is different from the simple majority
rule and minority rule. With the introduction of this competition influence, it is shown that the
effect of the inflexible units can lead to a nontrivial phase diagram in which abundant phase
transition behaviors are exhibited.

2. Model

In a two-dimensional lattice surface, the state of each site may represent a viewpoint or a kind
of culture, etc. The state of every one evolves according to a social process, whose dynamic
behavior is determined not only by other correlative surrounding effects but also by its own
character.

To illustrate the cases simply, first, we suppose that an individual in the system can only
stay in one of two possible states, σi ∈ {+1,−1}. We define a function W(σi) to describe the
interaction with its neighbors. W(σi) = 2σi

∑4
j=1 σj , here σj (j = 1, 2, 3, 4) are the states of

four sites connected to node i and these four sites are called mates of i.
We introduce the updating rule of a state. When W(σi) > 0, σi has the same state as

the most of its mates, σi changes its state with a probability exp[−W(σi)/T ], which relies on
a temperature-like parameter T as that in a usual physical system. However, when function
W(σi) < 0, σi is different from most of its mates, we assume that the overturning probability
of σi is not a unit one but a constant q(0 < q � 1). And when W(σi) = 0, we consider the
overturning probability of σi is equal to q also. Therefore, an individual has an opportunity to
keep its state when its state is different from the most of its mates. From the dynamical rule,
we can see that, when q = 1, the model restores to the Ising model [8]. However, our model
is a non-equilibrium model because the overturning probability of a state does not satisfy the
detailed equilibrium in the model.

3. Simulation results

In order to describe the dynamical behavior of the model, we define a magnetization-like order
parameter m as follows: m = 1

L2

∑L2

i=1 σi , here σi ∈ {+1,−1}. The lattice size is L × L, and
the sum is carried out over all of the sites. Obviously, the system enters into an ordered state
when 〈|m|〉 approaches 1, i.e. all of the sites stay almost in the same state. However, when
〈|m|〉 reaches zero, it stays in a complete disordered state.

An extensive Monte Carlo numerical simulation has been performed on our model with
a random initial condition and a periodic boundary condition in a regular lattice. The lattice
sizes are 16 × 16, 32 × 32, 64 × 64, respectively. The order parameter has been calculated
after the system reaches a non-equilibrium stationary state. The calculated results are averaged
over n independent runs, where n × L2 ≈ 1 × 106.

As the simulation results shown in figure 1, it is found that the system enters into an
ordered state when T is below a critical temperature Tc(q). In the top of figure 1, the change of
〈|m|〉 denotes a continuous phase transition with T varying for q = 0.9, while the simulation
results in the bottom of figure 1 disclose that there is a discontinuous phase transition with
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(a) (b)

(c) (d)

Figure 1. The order parameter |〈m〉| against T. From figures (a) to (b), the system exhibits
a continuous phase transition from an ordered state to a disordered state for q = 0.9. From
figures (c) to (d), the system exhibits a discontinuous phase transition for q = 0.1.

Figure 2. Phase diagram of the model in the q – T plane. The system displays a line of a continuous
phase transition when q > qc . The open symbols represent continuous phase transitions and the
solid ones represent discontinuous phase transitions.

T varying for q = 0.1. From the probability density functions (PDF) of the order parameter
inserted in figure 1 near the phase transition point, one can distinguish the continuous phase
transition and the discontinuous phase transition more clearly. It seems that the inflexible units
cause the change of the phase transition.

From the simulation results in figure 2, it is shown that there is a line of continuous phase
transition when q > qc and the phase transition becomes a discontinuous one for q < qc. The
point qc is estimated roughly to be 0.55(5); it is shown that there is a nonequilibrium tricritical
point at qc. When q → 0, then phase transition Tc decreases rapidly.
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(a)

(b)

Figure 3. Domain size distribution at the critical point. (a) The log–log plot of ρ against domain
size s, T = 2.18, q = 0.9, the exponent τ = 1.94 ± 0.3. (b) The log–log plot of ρ against domain
size s, T = 1.255, q = 0.1, τ = 1.647 ± 0.003, L = 64.

In order to further understand the phase transition behaviors at different q values, we
discuss the domain size distribution at the critical point Tc. The neighborhood sites in a same
state are in a same domain; the number of sites in a domain is defined as the domain size.
For T < Tc, there are few small size domains and few large size domains; the largest size
approaches L2. On the other hand, for T > Tc, there are many small size domains. Close to
the critical point, it is found that the domain size s distributes in a power law, ρ(s) ∼ s−τ for
s � L2, where ρ(s) is the probability of a domain size. As shown in figures 3(a) and (b), we
can calculate the exponent τ , τ = 1.94±0.03 for q = 0.9 and τ = 1.647±0.003 for q = 0.1,
respectively. Because the domain size distribution is related to the internal spatial structure of
a system at the neighbor of the critical point, the difference of exponent τ indicates a change
of the internal structure when q = 0.9 and q = 0.1.

We can find that, in figure 3(a), there is a local maximum probability of the domain for
q = 0.9 compared to the domain distribution in figure 3(b). Small q corresponds to that
an individual has a stronger tendency to keep its state and then the interaction between the
neighbors decreases and the formation of a large domain becomes difficult. But it is easy for
a unit to follow the majority of neighbors to form a larger domain for larger q. Therefore, as
shown in figure 3(a), many more larger domains form gradually for q = 0.9 when T decreases
to the critical point. Therefore, we can speculate that the existence of the discontinuous phase
transition is related to a decrease of the interaction between neighbors along the interface of
the different domains.

We employ a finite size scaling analysis to study the critical behavior of the continuous
phase transition for q > qc. In the neighborhood of the critical point Tc, 〈|m|〉 ∝ (Tc − T )β
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Figure 4. (a) Double logarithmic plot of the order parameter 〈|m|〉 versus L for q = 0.8.
(b) A log–log plot of 〈|m|〉Lβ/ν against (1 − T/Tc)L

1/ν for L = 64 and L = 100. q = 0.8.

(T < Tc), where β is the order parameter exponent. In addition, when T is near to the critical
point Tc of the second-order phase transition, a character length scale ξ denotes the correlation
length in space, ξ ∝ (Tc − T )−ν (T < Tc), where ν is a correlation length exponent in the
space direction. At a critical point, various ensemble-averaged quantities depend on the ratio
of the system size and the correlation length L/ξ . The order parameter 〈|m|〉 satisfies the
scaling form in the neighborhood of the critical point: 〈|m|〉 ∝ L−β/νf [(Tc − T )L1/ν] so that
at Tc, 〈|m|〉 ∝ L−β/ν .

In figure 4(a), we take a log–log plot of 〈|m|〉 against L for q = 0.8, we can obtain
β/ν = 0.143 ± 0.001 for q = 0.8. In figure 4(b), we have plotted 〈|m|〉Lβ/ν versus
(1 −T/Tc)L

1/ν on a double-logarithmic plot for q = 0.8. It shows that, with β/ν = 0.143(1)

and a choice ν = 0.80, the data for the two lattice sizes are well collapsed on a single
curve [14], the slope of the line is β = 0.118 ± 0.005. Therefore, we give the exponents
β = 0.118(5), ν = 0.80(1) for q = 0.8. With the same analysis method, we can obtain
β/ν = 0.134(2), β = 0.11(1), ν = 0.85(2) for q = 0.6. These critical exponents are
different from both mean-field (β = ν = 1/2) and exact values (β = 1/8 and ν = 1)
for the equilibrium Ising model in two dimensions. In addition, the critical behavior of
these continuous phase transitions also does not belong to any known universality class of
nonequilibrium phase transition [15].
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4. Conclusion

In a real social system, the interactions between individuals are different from those in the
traditionally physical system. We propose a simple binary-state model to study the influence
of the existence of the stubborn unit in a social system, where a unit has a chance to keep its
state with a probability 1 − q even though its state is different from those of the majority of its
interacting neighbors. It is found that the inflexible behavior affects the dynamical behavior
seriously. From the numerical simulation results, a nontrivial phase diagram is shown in
q – T parameter plane. When qc < q < 1, the system exhibits a continuous phase transition
and the transition becomes a discontinuous one when q is below qc. Furthermore, the critical
behavior of the nonequilibrium continuous phase transition in the model is different from the
well-known universality classes.
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